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ABSTRACT 

Dimensionality reduction techniques are broadly categorized as feature extraction and feature selection. Feature 

extraction techniques select features in the transformed space while feature selection techniques consist of finding a subset 

of original features or variables that is optimal for a given criterion for adequate representation of the whole data. 

Principal Component Analysis (PCA) is often the most common choice for reducing dimensionality of multivariate data 

through feature extraction. However, dimensionality reduction using PCA does not provide a real reduction of 

dimensionality in terms of the original variables, since all of the original variables are used in projection to the lower 

dimensional. Several criteria have been proposed for selecting the best subset of features which can preserve the structure 

and variation of the original data. However, little is known about the applications feature selection techniques in 

agricultural and biological research where many measurements are taken on each individual. In the present study, 

applicability of matrix correlation based feature selection techniques has been examined for identification of informative 

and redundant features in wheat data.  RV-coefficient (Robert and Escoffier, 1976) and Yanai’s Generalized Coefficient of 

Determination (Ramsay et al., (1984) have been used to measure the similarity between two data matrices. Subsets 

selected using different criteria have been compared in terms of the measure of overall predictive efficiency. For 

identification of important features, secondary data of 67 wheat genotypes recorded for 14 characters have been used. 

Models built with subset of best features are expected not only to reduce the model complexity but also require less time 

and resources. 
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INTRODUCTION 

In many situations, practical as well as theoretical considerations compel us to reduce data dimensionality or select variable 

subsets prior to the desired analysis. The existing dimensional reduction approaches are broadly categorized as feature 

extraction and feature selection. Feature extraction techniques select features in the transformed space while feature 

selection techniques find an optimal subset of original variables which according to some given criterion adequately 

represent the whole data. Principal Component Analysis (PCA) is an optimal statistical tool for feature extraction in 

multivariate analysis. It replaces the initial set of variables by a small number of linear combinations of the original 

variables called principal components (PCs) that together explain most of the variation in the data. However, the 
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dimensionality reduction via principal component analysis does not provide a real reduction of dimensionality in terms of 

the original variables, as all original variables are still required to define even a single PC. Thus, for better interpretation 

one can reduce the dimensionality of the space in terms of the original variables without disturbing the main features of the 

whole data set. Also, in applications where interpretable features are desired, feature/variable selection techniques are more 

appropriate. The important contributions to the problem of variable selection in PCA setting are due to Jolliffe (1972, 

2002), McCabe (1984), Krzanowski (1987), Cadima and Jolliffe (2001). Hooda and Hooda (2006, & 2008) used 

Shannon’s entropy and mutual information for variable selection in multivariate analysis under the assumption of 

normality of data. Hooda et al. (2017) used principal component analysis (PCA) and canonical correlation analysis 

techniques in an attempt towards identification of principal agricultural and socio-economic dimensions in Haryana. In the 

present study, applicability of matrix correlation based feature selection techniques has been examined for identification of 

informative and redundant features in wheat data. RV-coefficient (Robert and Escoffier, 1976) and Yanai’s Generalized 

Coefficient of Determination (Ramsay et al., (1984) have been used to measure the similarity between two data matrices. 

Subsets selected using different criteria have been compared in terms of the measure of overall predictive efficiency. For 

identification of important features, secondary data of 67 wheat genotypes recorded for 14 characters have been used.  

MATERIAL AND METHODS 

Data 

Secondary data on growth and yield characters of 67 wheat genotypes was used for selection of variable subsets according 

to their importance. The data was generated in an experiment conducted at research farm of the Department of Genetics 

and Plant Breeding CCS HAU-Hisar with 6 row/entry and row length of 6m. The detail of the genotypes and recorded 

variables on wheat crop is given in Table-1. 

Table 1: Wheat Genotype 
S No Genotype S No Genotype S No Genotype S No Genotype 

1 AL 1 18 AL 18 35 AL 35 52 WH 542 
2 AL 2 19 AL 19 36 AL 36 53 WH 711 
3 AL 3 20 AL 20 37 AL 37 54 WH 1105 
4 AL 4 21 AL 21 38 AL 38 55 WH 1124 
5 AL 5 22 AL 22 39 AL 39 56 UP 2338 
6 AL 6 23 AL 23 40 AL 40 57 HD 2687 
7 AL 7 24 AL 24 41 AL 41 58 WH 1080 
8 AL 8 25 AL 25 42 AL 42 59 PBW 343 
9 AL 9 26 AL 26 43 AL 43 60 DPW621-50 
10 AL 10 27 AL 27 44 AL 44 61 PBW 550 
11 AL 11 28 AL 28 45 AL 45 62 DBW 17 
12 AL 12 29 AL 29 46 AL 46 63 HD 2967 
13 AL 13 30 AL 30 47 AL 47 64 HD 2851 
14 AL 14 31 AL 31 48 AL 48 65 RAJ 3765 
15 AL 15 32 AL 32 49 AL 49 66 PBW 373 
16 AL 16 33 AL 33 50 HD3086 67 PBW 590 
17 AL 17 34 AL 34 51 WH 1025   
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The observations were recorded on the following 14 characters: 

• DTH: No. of Days to Heading 

• PH: Plant Height (cm) 

• SL: Spike Length (cm) 

• SPLET: Spikelet/Spike 

• TILL: No. of Tillers/ Meter 

• SWT: Spike Weight (g) 

• GWpS: Grain Weight (g/ spike)  

• FLL: Flag Leaf Length (cm) 

• FLB: Flag Leaf Breath (cm) 

• FLA: Flag Leaf Area (cm2) 

• GWT: 1000 Grain Weight (g) 

• BY: Biological Yield (kg /plot) 

• HI: Harvest Index (%) 

• GY: Grain Yield (kg/plot) 

Variable Selection Method  

If A and B are two nxp (non-zero) matrices, then cosine of the angle gives the correlation between them (Ramsay et al., 

1984). Thus, correlation between the matrices A and B is given by 

cos(A , B) = 
B.A

BA,                                                           (1) 

Where, BA,  = Trace (A t B); A = )( AA tTrace and B = )( BB tTrace   represent the inner product 

and the norms induced by the inner products. 

In the present notations, n×p data matrix X is the standardized data on p characters observed on each of the n 

wheat genotypes. Y(n×q) denote an arbitrary subset of q columns of X and R = X tX/n is the correlation matrix of p 

variables.  

Rv-Coefficient 

The RV-coefficient was introduced by Escoufier (1973) as a measure of similarity between squared symmetric and semi-

definite matrices and as a theoretical tool to analyse multivariate techniques. Let A(n×g) be the PC scores of first k 

principal components based on the complete data set and B(n×k) be the scores of PCs based on a subset of k (here, g = k) 

variables measured on same set of n individuals. In order to compare rectangular matrices using the RV -Coefficient we 

first transform them into square matrices. Let S and T be two positive definite matrices of same dimensions obtained as     
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S = AA t, T = BBt. RV-Coefficient measures the distances between the corresponding points of these two configurations 

and is cos(AA t, BBt) and can be defined as:  

)(.)(

)(
)(

TT.SS.
T.S

YX,
TraceTrace

Trace
RV =

).(.).(

).(

YYYYXXXX
YYXX

′′′′
′′

=
TraceTrace

Trace                                        (2) 

The RV-coefficient is used as the actual measure of closeness of X and Y. The value of RV(B,Y) varies from 0 to 

1. RV(X,Y) = 0 if and only if the two sets of variable are independent. The closer to 1 the RV(X,Y) is, more similar are the 

two configurations.  Thus, for selection of best subset of a given size we maximize the RV-coefficient between the two 

configurations. 

Yanai’s Generalized Coefficient of Determination (GCD) 

Yanai’s Generalized Coefficient of Determination (Ramsay et al., 1984) measures the degree of similarity between two 

subspaces and is defined as the cosine of the angle between the matrices of the orthogonal projections on those subspaces. 

Given a data set and a subset of k of its principal components, the GCD gives a measure of similarity between the principal 

subspace spanned by the first k principal components and the subspace spanned by a given k-variables subset of the 

original variables (Cadima and Jollife, 2001). The GCD is the correlation between the matrix Pk of orthogonal projections 

on the subspace spanned by a given k-variable subset and the matrix Pg of orthogonal projections on the subspace spanned 

by the given principal components of the full data set.   

i

k

i
mgk R

k
GCD )(

1
),cos(

1
∑

=
== PP                                         (3) 

Where (Rm)i is the multiple correlation between the ith PC of the full data set and the k selected variables. 

Maximization of GCD corresponds to the selection of k variables that span a subspace that is as close as possible to the 

principal subspace spanned by the g principal components. The GCD for the subspaces has values between 0 (means 

subspaces are orthogonal) and 1 (if the two sets of PCs coincide). According to Ramsay et al. (1984), GCD is the average 

of the squared canonical correlations between two sets of variables spanning each of the subspaces. 

RESULTS AND DISCUSSION 

Coefficient of variation indicated that the character GWpS (Grain weight (g/spike) has maximum variability (22.94%) 

followed by SL (Spike length), TILL (No. of tillers/ meter) and FLL (Flag leaf length) with CV values equal to 14.72%, 

14.23% and 14.03%, respectively. Since the characters are measured in different units so correlation matrix is more 

appropriate than the covariance matrix for selection of important variables. Correlation matrix for the 14 characters of 

wheat is presented below: 
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Table 2: Correlation Matrix  

 DTH PH SL SPLET TILL SWT GWpS FLL FLB FLA GWT BY HI 
PH 0.268 

            
SL 0.084 0.208 

           
SPLET 0.214 0.156 -0.031 

          
TILL 0.052 0.150 0.216 0.101 

         
SWT -0.045 0.085 -0.217 -0.112 0.100 

        
GWpS -0.092 0.054 -0.220 -0.114 0.109 0.962 

       
FLL -0.077 -0.016 0.307 0.154 -0.198 -0.036 -0.026 

      
FLB 0.265 0.143 0.143 0.241 0.278 -0.085 -0.056 -0.235 

     
FLA 0.073 0.061 0.374 0.281 -0.031 -0.080 -0.053 0.838 0.330 

    
GWT -0.089 -0.045 0.031 -0.348 -0.127 0.103 0.177 -0.084 -0.272 -0.227 

   
BY -0.174 0.176 -0.206 -0.040 0.182 0.103 0.127 -0.041 -0.194 -0.153 0.197 

  
HI -0.017 -0.171 0.139 0.046 -0.046 -0.047 -0.084 -0.093 0.043 -0.067 -0.091 -0.438 

 
GY -0.141 -0.061 -0.031 0.032 0.104 0.033 0.011 -0.147 -0.080 -0.191 0.020 0.268 0.743 

 
Correlation matrix given below indicates that except a few entries all elements are small. The characters FLL and 

FLA have very high positive correlation (0.838) indicating that these characters provide overlapping information. 

Similarly, HI has high positive correlation (0.743) with grain yield (GY). First seven principal components were retained 

based on the average criterion (eigenvalue >1) for PCA with correlation matrix as input.  Percent variation explained and 

cumulative for these components is given below: 

Table 3 

PC Variance Variation (%) Cumulative 
Variation (%) 

1 2.66 18.98 18.98 
2 2.04 14.58 33.56 
3 1.84 13.17 46.73 
4 1.65 11.80 58.54 
5 1.35 9.66 68.19 
6 1.22 8.69 76.88 
7 1.01 7.18 84.06 

 
The first 7 PCs explained 84.06% of the total variability. The first principal component explained 18.98% of 

variability followed by 14.58% and 13.17% variability explained by PC2 and PC3 respectively. The discarded 7 PCs 

explained only about 16% of the total variation. Principal component loading for the first 7 PCs are given below: 

Table 4: Principal Component Loadings Matrix for First 7 PCs 

Variable 
Component 

1 2 3 4 5 6 7 
DTH 0.324 0.085 0.414 -0.229 -0.233 0.196 0.537 
PH 0.148 0.340 0.408 -0.187 0.344 0.171 0.481 
SL 0.524 0.017 -0.024 0.170 0.374 0.624 -0.086 
SPLET 0.461 0.066 0.343 0.070 0.010 -0.558 0.221 
TILL 0.022 0.101 0.603 -0.039 0.401 0.124 -0.486 
SWT -0.558 0.540 0.295 0.486 -0.207 0.054 0.036 
GWpS -0.568 0.566 0.264 0.476 -0.188 0.064 -0.013 
FLL 0.498 0.422 -0.529 0.448 0.191 -0.115 0.093 
FLB 0.439 0.034 0.605 -0.075 -0.174 0.086 -0.296 
FLA 0.726 0.430 -0.176 0.394 0.085 -0.059 -0.080 
GWT000 -0.457 0.057 -0.312 -0.076 0.199 0.488 0.203 
BY -0.411 0.254 0.021 -0.227 0.696 -0.353 0.031 
HI 0.062 -0.720 0.186 0.629 -0.049 0.120 0.145 
GY -0.241 -0.585 0.242 0.502 0.447 -0.158 0.162 
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Jolliffe (1972, 1973) gave several methods for selection and discarding of variables in principal component 

analysis. According to Jolliffe (1972) B2 criterion, if we associate one variable to each of the first 7 PCs starting from PC1, 

then variables in order of their importance were found to be FLA, HI, FLB, GY, BY, SL, and DTH.   

Variable subsets of various sizes selected using RV-Coefficient and GCD criterion have been presented in Table-5 

and Table-6 respectively. 

Table 5: Subsets of Various Sizes Selected using RV-Coefficient Criterion  

Size Rv Rv-Square Cardinality of Selected Variables 
1 0.452 0.204  10 
2 0.626 0.392 7, 10 
3 0.731 0.535  7, 10, 13 
4 0.792 0.628 7, 8, 9, 13 
5 0.842 0.709 7, 8, 9, 12, 14 
6 0.878 0.771 2, 7, 8, 9, 12, 14 
7 0.909 0.826 2, 4, 7, 8, 9, 12, 14 
8 0.937 0.877 2, 4, 5, 7, 8, 9, 12, 13 
9 0.958 0.918 1, 2, 4, 5, 7, 8, 9, 12, 13 
10 0.979 0.959 1, 2, 4, 5, 7, 8, 9, 11, 13, 14  
11 0.997 0.994  1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 14 
12 0.999 0.999 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12. 14 
13 1.000 1.000 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14 

 

 
Figure 1: Plot of Best Rv Values against Subset Size. 

 
The results in Table-5 and also the Fig-1 indicate that RV-coefficient changes slightly when the number of 

features is greater than 7. The best subset of 7 features selected using the RV-coefficient is {PH, SPLET, GWpS, FLL, 

FLB, BY, GY}. The column 3 of the Table-5 is equivalent to the proportion of total variance that is preserved if the p 

variables are orthogonally projected onto the subspace spanned by a given subset of k variables. Thus, selected best subset 

of size 7 explained 82.6% variability which very close to the variability explained by the same number of PCs based on 

complete data.  

Variable subsets of various sizes selected using Yanai’s Generalized Coefficient of Determination (GCD) criteria 

have been presented in Table-6. The subsets of sizes one and two are same for both the criteria. However, subsets of sizes 

3 or more have many variables in with that selected via RV-coefficient. The best subset of 7 variables selected using the 
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GCD criterion is {PH, SPLET, TILL, SWT, FLL, BY, HI}. The majority of the variables selected vide RV-coefficient and 

GCD criteria are same. In some cases substitution has taken place due the high correlation between variables (for example, 

GY was selected by RV-coefficient while HI by GCD criterion). 

Table 3: Subsets of Various Sizes Selected using GCD-Criterion  

Size GCD Cardinality of Selected Variables 
1 0.528 10 
2 0.671 7, 10 
3 0.664 7, 8, 9 
4 0.846 7, 8, 9, 13 
5 0.833 7, 8, 9, 12, 13 
6 0.850 3, 4, 7, 8, 12, 14 
7 0.829 2, 4, 5, 6, 8, 12, 13 
8 0.869 2, 3, 7, 8, 9, 11, 13, 14 
9 0.921 1, 2, 5, 7, 8, 9, 11, 13, 14 
10 0.971 1, 2, 4, 5, 7, 8, 9, 11, 13, 14 
11 0.998 1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 14 
12 0.999 1, 2, 3, 4, 5, 6, 8, 9, 11, 12. 14 
13 1.000 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14 

 
From Table 5 & 6 a subset of desired number of important variables can be selected for wheat. Further, the 

analysis can serve as a guide for the experimenter to select a relatively more informative subset of variables or to discard 

the redundant variables for future studies related to this crop. The selection of more informative variables is expected to be 

economical on cost and time aspects in future experiments. However, final decision regarding inclusion or exclusion of any 

variable rests on the judgment of the experimenter and objectives of his research.     

CONCLUSIONS 

Importance of variables selection in has been emphasized over the dimensionality reduction through principal component 

analysis while interpreting research data. Variables selection based on GCD and RV- coefficient criteria have been applied 

for feature selection in wheat. Subsets of various sizes have been obtained by both the criteria. Best subsets of various sizes 

have been determined using both the criteria.  
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